Efficient Intramolecular Asymmetric Reductions of α -, β -, and γ -Keto Acids with Diisopinocampheylborane¹

ORGANIC LETTERS 2001 Vol. 3, No. 1 17–18

P. Veeraraghavan Ramachandran,* Herbert C. Brown, and Sangeeta Pitre

Herbert C. Brown Center for Borane Research, Purdue University, West Lafayette, Indiana 47907-1393

chandran@purdue.edu

Received June 19, 2000

ABSTRACT

The preparation of optically pure hydroxy esters or acids and their conversion to lactones are important processes in organic syntheses as a result of the significance of such molecules.² Asymmetric reduction of the corresponding ketones is an efficient route to achieve this goal. We had reported that one of our successful reagents, B-chlorodiisopinocampheylborane (Ipc₂BCl, DIP-Chloride, 1) is very effective for the intramolecular asymmetric reductions of various classes of ketones, including keto acids.3 The % enantiomeric excess (ee) achieved for the products from the reduction of o-acylbenzoic acids with 1 was inferior, attributed to a partial intermolecular reduction.³ Utilizing the sodium salt of the keto acid or conducting the reaction in the presence of an amine circumvented this problem.³ Carrying out the reduction with the parent diisopinocampheylborane (2) also solved the difficulty.³ Utilizing our procedure, two separate reports on the reduction of α - and β -keto acids with **1** in the presence of amines have recently appeared.⁴ We herein report the intramolecular reduction of aliphatic keto acids with **2**.

Reduction of α - and β -keto acids (3 and 5, respectively) with 2 provided essentially similar results as described with 1.⁴ However, the absence of hydrogen chloride in the medium makes the reduction with 2 more efficient. The workup is simple and the procedure can be applied to acid-sensitive molecules as well. Our results from α - and β -keto acids are summarized in Table 1.

The reduction was then extended to γ -keto acids. 3-Benzoylpropanoic acid (**7a**) was reduced with **2** within 36 h at room temperature. Workup provided 90% yield of the corresponding hydroxy acid **8a**, which was lactonized in the presence of trifluoroacetic acid to the corresponding γ -lactone **9a** in 90% yield and 94% ee in the *S*-isomer (Scheme 1).⁵ The reduction of an aliphatic γ -keto acid, 4-oxopentanoic acid (**7b**), with **2** yielded the corresponding hydroxy acid **8b** in 98% ee. This was readily converted to the lactone **9b**.

We included the reduction of 4-oxohexanoic acid (7c) and

⁽¹⁾ Contribution 7 from the Herbert C. Brown Center for Borane Research.

^{(2) (}a) Collins, I. J. Chem. Soc., Perkin Trans. 1 1999, 1377. (b) Wang, Z.; Meng, X. J.; Kabalka, G. W. Tetrahedron Lett. 1991 32, 4619. (c) Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97.

^{(3) (}a) DIP-Chloride is the trademark of the Aldrich Chemical Co. (b) Ramachandran, P. V.; Chen, G. M.; Brown, H. C. *Tetrahedron Lett.* **1996**, *37*, 2205.

^{(4) (}a) Wang, Z.; La, B.; Fortunak, J. M.; Meng, X. J.; Kabalka, G. W. *Tetrahedron Lett.* **1998** *39*, 5501. (b) Wang, Z.; Zhao, C.; Pierce, M. E.; Fortunak, J. M. *Tetrahedron: Asymmetry* **1999**, *10*, 225.

Table 1.	Reduction	of Keto	Acids with	(-)-Ipc ₂ BH (2)
----------	-----------	---------	------------	-----------------------------

keto acid R-CO-(CH ₂) _n COOH		rxn time	hydroxy acid R-CH(OH)-(CH ₂) _n COOH				
no.	п	R	h	no.	yield (%)	ee (%)	config ^a
3a	0	Ph	10	4a	82	95 ^b	R
3b	0	<i>n</i> -Pr	6	4b	75	77 ^{c,d}	R
5a	1	Ph	55	6a	85	92^d	S
5b	1	Me	32	6b	75	92^d	R
7a	2	Ph	36	8a	90	94 ^e	S
7b	2	Me	17	8 b	83	98 ^f	R
7c	2	Et	48	8 c	82	$95^{f,g}$	R

^{*a*} Determined by comparison of the optical rotations with those reported in the literature. ^{*b*} % ee determined by the HPLC analysis of the hydroxy ester on a Chiralcel OD-H column. ^{*c*} % ee determined by ¹H NMR spectroscopic analysis of the ethyl acetoxycarboxylate in the presence of Eu(hfc)₃. ^{*d*} % ee determined by HPLC analysis of the corresponding benzyl ester on a Chiralcel OD-H column. ^{*e*} % ee determined by HPLC analysis of the corresponding lactone on a Chiralcel OD-H column. ^{*f*} % ee determined by comparison of the optical rotation. ^{*g*} % ee determined by ¹H NMR spectroscopic analysis (in the presence of Eu(hfc)₃) of the diol obtained by opening the lactone with excess MeLi.⁸

conversion to the corresponding γ -caprolactone, 4-hexanolide (**9c**), in 95% ee because of its importance as a component of the attractant pheromone of several *Trogoderma* species of dermestid beetles, such as *T. glabrum* and *T. granarium*.⁶

 δ -Keto acids did not undergo intramolecular reduction with **2**, even in refluxing THF. Thus, the intramolecular asymmetric reduction is limited to α -, β -, and γ -keto acids.

In conclusion, we have shown that diisopinocampheylborane is an excellent reagent for the intramolecular asymmetric reduction of aliphatic and aromatic α -, β -, and γ -keto acids. The hydroxy acids were obtained in 75–90% yields and 77–98% ee. The reduction of δ -keto acids does not proceed under the same conditions. This protocol has been utilized for the convenient synthesis of γ -lactones from the corresponding γ -keto acids.⁷ The natural isomer of the insect pheromone of a dermestid beetle, 4-hexanolide, has also been synthesized.

Acknowledgment. Financial assistance from the United States Army Research Office (DAAG55-98-1-0405) is gratefully acknowledged.

OL0062291

(7) Representative procedure for the synthesis of 4-hexanolide. An oven-dried, 100 mL round-bottom flask equipped with a sidearm, magnetic stirring bar, and a connecting tube was cooled to room temperature in a stream of nitrogen. (–)-Ipc₂BH (**2**) (2.82 g, 10 mmol) was transferred to the flask in a glovebag, suspended in THF (10 mL) and stirred at 0 °C. 4-Oxohexanoic acid (1.3 g, 10 mmol) dissolved in a minimum amount of anhydrous THF was slowly added, at 0 °C, to the flask when evolution of hydrogen was observed. The ¹¹B NMR of the resultant clear solution showed a peak at δ 52 ppm. The mixture was warmed to room temperature. The progress of the reaction was monitored by ¹¹B NMR spectroscopy, which revealed a peak at δ 32 ppm when the reaction was complete. The mixture was oxidized by the addition of 4 mL of 3 N NaOH and 4 mL of 30% H2O2. The aqueous layer was separated, washed several times with Et2O to remove organics, and acidified using 1.0 M aqueous HCl. The product hydroxy acid was extracted with EtOAc (3 \times 40 mL). The organic layer was washed with brine and dried over anhydrous MgSO₄. Removal of solvents afforded the hydroxy acid (1.1 g, 82%), which was dissolved in $CH_2Cl_2\ (10\ mL)$ and cooled to 0 °C, followed by the addition of 4 drops of trifluoroacetic acid. Stirring for 6 h at room temperature completed the lactonization, and the reaction was worked up with aqueous sodium bicarbonate. The organic layer was washed with water, dried (MgSO₄), and concentrated to yield 0.76 g (80%) of **9c**, $[\alpha]^{20}_{D} = +50.63$ (*c* 1.5, MeOH), which corresponds to 95% ee in the (R)-isomer.⁶

(8) Jakovac, I. J.; Jones, J. B. J. Org. Chem. 1979, 44, 2165.

⁽⁵⁾ The % ee and configuration are based on the optical rotation reported in the literature. Brown, H. C.; Kulkarni, S. V.; Racherla, U. S. J. Org. Chem. **1994**, 59, 365.

^{(6) (}a) Mori, K.; Mori, H.; Sugai, T. *Tetrahedron* **1985**, 41, 919 and references therein. (b) It has been shown that *T. granarium* responds to (R)-9 only and not to its antipode or a racemic mixture.